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This is the thirteenth of a series of technical reports concerned

with the Telemetry Systems on the Saturn vehicle.

The purpose of this report is to develop a methodology for
implementing statistical control charts as a basis for telemetry
package acceptance procedures., The methodology is developed for both
the control chart for mean values and for the control chart for

standard deviations.

A total expected cost model which relates alpha and beta errors
as well as the sample size is developed. This model is used to
establish optimum upper and lower control limits for the chart for
mean values. Control limits for the chart for standard deviations

are then established based on this model.

An experiment that was designed and conducted for the purpose

of testing the feasibility of the optimum control limits is reported.

Results of this experiment confirm the reasonableness of the assumptions

made in the cost model. Subcarrier oscillators in the experimental
telemetry package that were intentionally maladjusted are detected

by the control charts,

Estimates of the accuracy and precision of the telemetry
package are obtained and ninety-nine per cent confidence limits are

established for these limits.

Standards for future control chart analysis are established for
both charts, These standards may be used for future package

checkout procedures.
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CHAPTER 1

INTRODUCTION

While the attempt to control the quality of a manufactured
product is as old as industry itself, the concept of statistical
quality control is relatively new. The greatest development in
statistics has occurred in the last sixty years, and it was not
until the 1920's that statistical theory began to be applied
effectively to quality control (4).! In recent years great
progress has been made in applying statistical methods to problems
of research and development. At the same time the application of
statistical quality control to the manufacturing process has become
recognized as a major factor in the reduction of the costs asso-
ciated with improved quality and in the improvement of product
quality. The integration of statistical quality control into the
area of research and development has also been a tremendous aid in

attaining both process and product control.

Statement of the Problem

A particular quality control problem has recently become

!Numbers is parentheses throughout the thesis indicate
the references as listed in the LIST OF REFERENCES.
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evident in the field of aerospace telemetry. Aerospace telemetry
is the "science of transmission of information from air and space
vehicles to accessible locations" (15).

The advent of the missile age has brought about a pheno-
menal increase in the usage of telemetry equipment. With the
evolution of new techniques and equipment for telemetering in-
flight space vehicle data, the need for increased accuracy and
precision of the transmitting equipment is obvious. An airborme
telemetry package? is placed on the spacecraft for the purpose
of transmitting the most critical measurements to a telemetry
ground station. At the ground station personnel continuously
monitor and analyze these measurement data to determine the effect
of flight conditions at the vehicle. Therefore it is of priwe
necessity for the telemetry package to be of sufficient quality to
assure that the transmitted data is actually that measured at the
vehicle.

During the time required for each telemetry package to be
sent from the manufacturer to the space vehicle, there are several
places where the control of the quality of the package needs to
be established. The first of these is at the manufacturing plant
immediately before shipping the package to the telemetry personnel.

Another is at the test laboratory immediately after the telemetry

A telemetry package is an electrical system consisting of
a set of subcarrier oscillators for converting measured voltage into
freqnency, a mixer amplifier, a transmitter, and a power amplifier
used for transmitting signals from space vehicle to a ground
receiving station.
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personnel have received the equipment. A third place for a quality

control program is at the test laboratory immediately before sending

the package to the vehicle. A fourth area for controlling the quality

of the equipment is at the vehicle prior to launch time. A final
area at wvhich the control of the telemetry package performance is
a necessity is in the spacecraft during flight. The monitoring of
actual flight calibration data and subsequent analysis by statis-
tical methods would indicate whether or not the package was
performing adequately during this critical phase.

It is believed that the methodology presented in this thesis
could be applied to any of these areas. However, the research will
be conducted at, and applied to, the third of these areas; the NASA
telemetry test laboratory immediately prior to sending the package
to the vehicle.

The present program for determining if a telemetry package
is operating in a satisfactory manner and is ready to be semnt to
the spacecraft consists of a series of rigorous electrical tests.
After these tests have been conducted and adjustments made on the
components, a five point calibration sequence? is fed through the
package and transmitted over a cable to the ground station. Here

it is received and sent througha bank of discrimismtors" and then

A five point calibration sequence consists of supplying
voltage in five distinct steps to a telemetry package. The steps
represent 0, 25, 50, 75, and 1002 of 5 volts,

“A discriminator is an instrument for separating a mixed
frequency signal into various frequency bands corresponding to
those produced by a related subcarrier oscillator.
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recorded by an oscillograph.® This record made by the oscillograph
is at present the only means for analyzing the quality of the
assembled package. It is thought that this method furnishes
inconclusive answers to the questions ''what is the accuracy and
precision of the package?" and “are there any assignable causes
of variation within the package?" Accuracy is a measure of
systematic errors wvhile precision is a measure of random (chance)
errors (5,6).

The researcher believes that by establishing an effective
program of quality control utilizing statistical methods, these
questions can be answered and ultimately a decision to reject or
accept the package as satisfactory can be made. Also, through
the establishment of a quality control program a quantitative

history of the performance of telemetry packages can be assembled.

The Proposed Methodology

The methodology employed in the establishment of this quality
control program will assure that the basic components of the
telemetry package, the subcarrier oscillators, are in statis-
tical control. The methodology is based on the statistical
control of product quality by Shewhart control charts. These

control charts will provide a graphical method for comparing with

SAn oscillograph is a device for producing a written curve
representing variable voltage.
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an average value the output of the different subcarrier oscillators

over several levels of imput voltage. Therefore subcarrier oscillators

(henceforth referred to as SC0's) which differ significantly from
the overall mean value may be investigated for assignable causes
of variation and subsequently replaced if abnormalities exist.

There are two distinct but related phases of control chart
analysis (10). 1In the first phiise, which is often termed "Control
with No Standard Given," the control chart is used as a device
for specifying a state of statistical control and judging whether
the state of control has been attained based on past data. The
purpose in this phase is thus to discover whether measurements from
gsamples vary among themselves by an amount greater than should be
attributed to chance. The second phase, usually termed "Control
with Respect to a Given Standard," is used to discover whether
measurements obtained in current production depart significantly
from "standard values" which may have been established by experience
based on prior data, by economic considerations, or by reference
to the desired state of the process as designated by the
specifications. The methodology developed in this thesis will be
applied to the first of these phiaes. The result of the analysis
will therefore be to judge whether a state of control has been
attained for the SCO's and then to specify a goal of statistical
control for future action.

Following a brief discussion of the general theory of quality
control in CHAPTER II, a theoretical development of the methodology
consists of two types of control charts. The control chart for

standard deviafions ( ¢ - chart ) is used for analyzing the



variability of the SCO's. The control chart for mean values

(X - chart) supplies a basis for judging whether the various X
values, the mean values for each SCO-input level grouping, are in
statistical control. Therefore SCO's which are not functioning
properly with respect to either their mean values or their varia-
bility can be quickly detected and investigated. After these
assignable causes have been removed, the performance of the SCO's can
be predicted and standards set for their variability and mean values.
These standards can then be used for the evaluation of future
telemetry package performance.

A second major area of investigation is the development of
the operating characteristic (0C) function for the chart for
means and the chart for standard deviations for analysis based on
past data. The OC functions are developed in CHAPTER 1V, and a
general procedure is given for obtaining the OC curve for both
charts.

A third major problem to be considered in this thesis is
the determination of the proper limit constant, K, to be used in
calculating the control chart limits. The selection of the
proper K factor requires considerable analysis, and the decision
must be based on an economic evaluation of the risks involved in
-nking incorrect decisions. This problem is solved in CHAPTER V.

1f the thesis is to have any practical significance, the
methodology must be applied to an actual situation and meaningful

results obtained. Therefore, a final major thesis contribution is



an investigation of the methodology applied to a real world
environment in CHAPTER VI. An experiment was performed in the
telemetry ground station at the Marshall Space Flight Center in
Huntsville, Alabama. The application of the methodology is tested
by observing the ability of the control charts to detect certain
malfunctioning components in a telemetry package set-up. Finally
vhen the control charts indicate that the experimental package is
in statistical control, the precision and accuracy of this package

is estimated.



CHAPTER 1I

THE GENERAL THEORY OF CONTROL CHARTS

"A control chart is a statistical device principally used
for the study and control of repetitive processes' (4). The
discovery and development of control charts were made in 1924 and
the following years by a young physicist of the Bell Telephone
Laboratories, Walter A. Shewhart. In trying to solve a problem
wvhich was complicated by the presence of random variation, he
decided that the problem was statistical in nature. Some of the
observed variation in performance was inherent in the process and
could be explained as being the result of chance causes. This type
variation was unavoidable. However, from time to time variations
occurred which could not be explained by chance alone, but were
the result of some change in the process. The differentiation of
these two causes of quality variation is the basis for the theory
of control charts.

If a group of data is studied and it is found that their
variation conforms to a statistical pattern that might reasonably
have been produced by chance causes, then it is assumed that there
has been no change in the process; i.e., there are no assignable

causes of variation present, and the process is said to be in
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"statistical control." If, however, the variations in the data do
not conform to a pattern that might be expected by chance causes,
then it is concluded that one or more assignable causes are at work,
and the process is said to be "out of control.” The nature of this
statistical pattern of variation is described as follows.

Suppose samples of a given size are taken at reéulat intervals
and suppose that for each sample some statistic X (sample mean,
sample standard deviation, etc.) is computed. Since this statistic
is a sample result it will be subject to sampling fluctuatioms.

If there are no assignable causes of variation present, these
sampling fluctuations will take the form of some definite statis-
tical distribution. Suppose, for example, theory suggests that the
sampling distribution of X is normal in form, as in Figure 1. This
distribution will have a mean which can be computed from the sample

means, and a standard deviation which can be computed from the

f(x)

Mean
FIGURE 1., DISTRIBUTION OF CHANCE

VARIATIONS IN A SAMPLE
MEASURE OF QUALITY.

within-sample variation for the various samples. From this mean
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and standard deviation certain probability points can be calculated.
If the vertical scale of a chart is calibrated in units of X and
the horizontal scale marked with respect to some rational basis for
ordering X and if horizontal lines are drawn through the mean of X,
and through an extreme value representing a certain probability
point on the upper and lower tail of the distributiom of X, the

result is a control chart for X, as in Figure 2.

X
e e
Mean of X
——————— L;;;r-zo;:;QI—L;;igh T
0 Basis for Ordering X

FIGURE 2, ILLUSTRATION OF THE THEORETICAL
BASIS FOR A CONTROL CHART.

Since the control chart is constructed in conformity with
statistical theory it can consequently be used to test the
hypothesis of control. To see whether a process is in control
sample values of X from data pertaining to the process are plotted
on the control chart. If these values all fall within the control
limits without varying in a nonrandom manner within the limits, then

the process can be said to be in control at the level indicated by
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the chart. If the data do not conform to this pattern then departures
from the pattern are investigated and assignable causes are tracked
down. After a condition of control has been satisfactorily established,
departure from the condition may be quickly detected by maintaining
a control chart on current output (3).

Figures 3 and 4 illustrate the use of two type control charts.
Figure 3 gives a chart for the averages of samples of shoulder
depth measurement of fragmentation bombs. The vertical scale is
calibrated in units of the sample means, X, and the horizontal
scale is marked for 10 samples taken from two days of production.
As can be seen, this chart shows that the sample averages are
not in a state of control since the means for samples 3 and 8 on
May 5 are above the upper conttdl limit. The process should be
investigated to determine why these two sample values are signi-
ficantly higher than the others. Figure 4 gives a chart for controlling
the variability in the measurement of shoulder depth of frag-
mentation bombs. The vertical scale for this chart is calibrated
in units of the sample standard deviation, o, and the horizontal
scale is marked as in Figure 3. This chart shows that the product
variability is in a state of statistical control since all points
fall within the control limits and the data varies in a random
manner within these limits.

It is important to note that the samples on a control chart
should represent subgroups of output that are as homogeneous as

possible. In other words, the subgroups should be such that if
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Upper
0.445 Control
Limit
_ 0.440
X Mean of X
0.435
Lower
0.430 Control
Limit
FIGURE 3. CONTROL CHART FOR X FOR SHOULDER DEPTH
OF FRAGMENTATION BOMBS (1).
0.010 -
Upper
— —— —— e = e e — — — — — Control

Limit

¢ 0.005 -/\ }\/\
\’A’},Jf/\ Mean of o

Lower
ot T T, ™ ™ Control
Limit
012345678901234567890
May 5 May 6

FIGURE 4. CONTROL CHART FOR s FOR SHOULDER
DEPTH OF FRAGMENTATION BOMBS (1).

assignable causes are present, they will show up in differences
between the subgroups rather than in differences between the
members of a subgroup (13). A natural subgroup, for example,
would be the output of a particular subcarrier oscillator. If a
system consisted of say 10 subcarrier oscillators, it would be
better to take a separate sample from the output of each SCO than
to have each sample made up of items from all 10 SCO's. For

differences between the subcarrier oscillators may be an assignable
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caugse that is the object of the control chart analysis to detect.

A control chart, then, provides a reasonable test for deter-

mining when a process can be considered to be in control. Some of the

advantages which may accrue when a process is brought into good

control by control chart analysis are (8):

1.

The act of getting a process into good statistical control
ordinarily involves the identification and removal of
undesirable assignable causes. Hence, quality performance
has been much improved.

A process in good statistical control is predictable.

If our process is in good statistical control, we can
more safely guarantee our product.

A chart in control in experimentation enables us to
determine soundly the experimental error.

The sound way to cut inspection is through getting the
process in control.



CHAPTER III

THE DEVELOPMENT OF THE METHODOLOGY

It has been stated that the major problem to be investigated
in this thesis is the use of control charts for determining whether
a telemetry package is in a state of statistical control. In the
two previous chapters the problem was discussed in general. The
purpose in this chapter is to develop a theoretical foundation
for the control chart models,

Let us consider the telemetry system as a type of industrial
process. The basic component of the telemetry package, the SCO,
may also be thought of as a sub-process. An analggous situation
would be a large factory within which there are several manu-
facturing divisions. We might be interested in comparing these
manufacturing divisions to determine whether they are producing
esgentially the same output. Control chart analysis would certainly
not seem applicable if we were only interested in comparing the
output of one entire factory with perhaps three other such factories.
However, the individual divisions within each factory would produce
a repetitive output which could be analyzed by control chart techniques.

Therefore, we shall view each SCO as a manufacturing division and as

14
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a distinct process, capable of producing output which is of a repetitive

nature. The input to the process is variable voltage capable of
being applied in discrete steps of 0, 1.25, 2.50, 3.75, and 5.00
volts to the telemetry package.® The package converts these
voltages to frequencies (each SCO represents a different frequency
range) and transmits these frequencies to a receiving station. Here
a set of discriminators decodes these mixed frequency signals and
separates them into frequency ranges corresponding to a particular
SCO. These frequencies are then sent to data redudion equipment and
converted into digital units. These units may then be printed with
each column of the printout corresponding to a particular SCO., This
system is represented by Figure 5. Now consider these printed
values as a sequence of random variables from the process. A
particular random variable can be represented by the symbol xijk
where i corresponds to the different levels of input voltage

(1 =1, 2, ... h), j corresponds to the different SCO's (j = 1, 2,
... m), and k corresponds to an individual value in a particular
SCO-level combination (k = 1, 2, ... n). Any random variable

xijk can therefore be thought of as being the result of a population
average value, where the population is composed of all possible values

for a particular SCO at a particular input level, plus some random

error. Let us assume that this random error is drawm from a

®These five voltage levels represent a synthetic calibration of
the telemetry package. Actual in-flight calibration is performed
somewhat differently as the output of the mixed signal from the
package is calibrated rather than each SCO individually.
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Sco#l
VOLTAGE
PACKAGE SCO#2 »| TRANSMITTER
SOURCE | > .
AW N
4
#2 SEL
RECEIVER |——— gl DISCRIMINATORS , }— 3. DATA
. REDUCTION
. EQUIPMENT
PRINTER
FIGURE 5. BLOCK DIAGRAM OF THE FM/FM

EXPERIMENTAL TELEMETRY SYSTEM.
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universe of errors that are statistically independent (the value
of any one error does not depend on the value of any other errors)
and are distributed in a normal distribution with a mean value of
zero and with some amount of variation. We shall further assume
that the several possible population average values that we are
considering are drawn from some large universe of average values
that are normally distributed. The mean value of this universe is the
mean for all possible SCO's at a particular level of input, and
there may be some amount of variability of the population averages
about this mean. Let us also assume that the population average
values are statistically independent of the random errors and
that the universe mean value and varjation are fixed quantities,
but are unknown to us and must be estimated from available data.

We may now express the random variable X by a linear mathematical

ijk
model and 1list several statements clarifying the terms in the model.

X 1=1,2, ...h; j=1,2, ...m; k=1, 2, ... n,

19k = X1y g0

where,

1. the ey are statistically independent and distributed
according to N( 0, oj2 );7

2. the i; g are statistically independent and distributed
according to N( X7, oiz ), vhere 032 = 8%05%;

3. the xij are statistically independent of the €14k’

4. the §; and oiz are fixed but unknown.

‘This notation indicates that the errors are distributed according
to a normal probability distribution (see p. 2]) with mean of zero and
variance of2.
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With this model in mind we shall now turn to the problem of
developing a set of decision rules for determining whether a
group of SCO's are in statistical control with respect to the
average values of the random variables associated with the different
SCO's. The testing of the hypothesis of statistical control in this

manner is termed "control through the use of the X-chart."

The X~-Chart

We shall first formulate the hypothesis of control of the mean
values and the alternative hypothesis and then develop the X-Chart
test for these hypotheses.

If the SCO's are in a state of statistical control one
consequence is that the population average values for the various
SCO's are equivaleﬁt. In other words, if we apply a certain voltage
to the telemetry package, this same voltage will be applied to
all the SCO's simultaneously. Therefore, if we digitize the output
of these SCO's for a very long period of time, and if the SCO's
are known to be properly adjusted and functioning correctly, the
average of all possible digitized values for any one SCO will be
exactly the same as for all the other SCO's. Thus 3;1 -X{, =
R i;-. This is the hypothesis of control and is often termed
the null hypoghesis, symbolized by Ho. On the other hand, if for
some reason any of the SCO's have not been properly adjusted or are
not functioning correctly, then all of the X, values will not be

ij
equal. Thus i{l ¢ 'i;z $ ... ¢ 'i;m. This is called the alternative
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hypothesis and is symbolized by H Let us examine these

1
hypotheses from a slightly different viewpoint. Statement 2,

listed on page 17 states that the i;j are normally distributed with
mean i; and variance 920;2. Now if a state of control exists,

these i;j will be equal and there will be, of course, no variation
among them. Therefore 6 will be zero. However, if any of the SCO's
are not functioning correctly, then these i;j will be unequal and
there will be some variation among them. Thus 6 will be greater

than zero. Our two hypotheses may now be stated as:

HO: 8 = 0;
le 8 > 0.
By treating the X° as random variables we are taking into account

13
the average effect of m independent assignable causes of varying

magnitude., Although we are unable to specify the size of any

particular shift in the process averages, i;j’ a measure of the
size of the X° as a group is given by the parameter 0.

i3
Thus a test for the hypothesis of control, HO: 8 = 0, would

be to compute each population average i;j and compare these values

==
-

is exactly equal to 1

with the universe mean ii. If each i; , then

3
6 = 0 and the process is in control. However, this method is

impossible since each i;j is an average of all possible digitized

values for a particular SCO, and the universe mean Xi is an average

value for all possible digitized values for all of the SCO's at a

given voltage level. We would have to let the process run for an

infinite period of time to assemble these values. Therefore, we must
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20
find some method for testing HO that will be based on sample
estimates of these population and universe parameters.

Let us take a sample of n values of X“k for a particular
SCO. The mean value of this sample is given by
— n .
xij - kfl xijk . (1}
n

We must show that the expected value of this sample mean for an
infinite number of samples of size n is E;j' In other words, we
must show that

E(x:l.j) - xij .

This can be done by using elementary theorems of expectation

(see Apprendix A, p. 86) as follows:

n
E(X;,) = E [_1_ R

- X:l y
It can also be shown in the same manner that the expected value of

;. Thus,

X, = £ X . . (2]
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Now since these ii values are sample rather than population means

3

there will be some amount of variation among them that can be
attributed to chance causes. A measure of this amount of variation is
given by wvhat is termed the standard error of the mean, symbolized

by og. .. The standard error of the mean is merely a standard
213

deviation computed from the various xij about ii. This term is

defined by the formula

m ==
o- = I (X,, -X )P .
X3 [4=1

The E;j values will therefore form some statistical distribution,

of which the mean is §; and the variance is é;ij. This distribution
of mean values will approach a normal (Gaussian) distribution
regardleass of the distribution of individual xijk values. The

frequency function of this distribution is given by

A5

This fact is attributed to the central limit theorem of statistics

£(X) = 1 [3)

Ui w

which states, '"The form of the distribution of sample means
approaches the form of a normal probability distribution as the
size of the sample ias increased" (9).

Thus, the probability for any‘iij to lie between any two

standard values Xi + Koiij and X~ Ko;ij can be found by inte-
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grating equation [3] for these limits. Suppose, for example, that

K = 3. The probability that X,, will lie between X, t 303, is

i3 i xi3
given by
§+30i ?4‘30; . =\2
: -1{X-X
- 2 0; -
f(X) = 1 e dx
Oi x
x~3o; X-30g

The value of this integral can be shown to be 0.9973 (see Appendix
A, p.87). Figure 6 shows a graph of f(iij) with probabilities
(areas under the curve) given for two value of K.

£(X,,)

2 .Sz

347 113,52 X
k=l km2 13

i

FIGURE 6. GRAPH OF f(ii ) DEPICTING AREAS
UNDER THE CURVE ,

Since the total area under the frequency function curve is

one, that is,
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the area outside limits of i; ] 30;11 is 1 - 0,9973 = 00,0027,

Therefore, the probability that iij will fall outside these

limits due to chance alone 1is 0.0027. This probability could
easily be computed for other values of K.

If was previously indicated that the expected value of i;j

1s X-. However, the expected value of oy « Sample

”»
is not oz

13 ij
variances used to estimate population variances tend to be

consistently small by a factor of (n-1)/n (see p27). Therefore,

to correct for this '"bias," oz must be multiplied by vm/(m-1)

X
i
to give an unbiased estimate of oéij' In computational form this

unbiased estimate is given by

oiij - aiij Vn/(m—l)

I, - Xp°

L X -

afm o (4]
1

Thus, to test the hypothesis of statistical control, HO: =0,
we will set the ;; $ Koiij limits for a particular value of K and
then observe whether the computed iij values fall within these
limits. If all X, , are within the limits, we will assume that

i3
the SCO's are in statistical control. However, if any iij falls
outside the limits, we will assume that an assignable cause of
variation has occurred and this particular SCO must be investigated.

We must realize that there is a certain risk involved in

making an incorrect decision. A point might fall outside the limits
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due merely to chance. In this case we would be investigating an
SCO for no reason. This type of decision error is called a Type I

error and the associated risk; i.e., the probability of committing

this error, is termed the a risk. On the other hand, we might conclude

that an SCO which has an assignable cause of variation would be in
control due to its i;j falling within the limits. This type of
decision error is called a Type II error and the associated risk

is termed the B risk. An analysis of these risks will be given in
subsequent chapters. It will suffice at this point to realize that
they exist.

We now have enough information to justify the establishment
of the X-Chart. This chart will be a graphical method for inter-
preting the decision rules we have developed.

The chart is established by drawing a center line at i; and
placing control limits at il % Kaiij' Values of'iij are then
plotted on the chart for the m SCO's and the hypothesis of control
tested by observing whether these plotted X,, fall within the

1j
limits. An example of this chart is shown in Figure 7.

[ ]
&
E
N — —  UCL=X,+K0z
0%
Eh'?. 1}
3'3 q\ \ C, = X
ﬁ \\\r/,/‘{ \b/ b t 1
o
o ==
- — e — —— —— — —— — —— LCL=X,-K8
1 1 i ] ] ] 177 %44
1 2 3 4 5 .« o o m

FIGURE 7. CONTROL CHART FOR MEAN VALUES
OF SCO'S.
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We shall now turn to the problem of developing a control chart

for testing the variability within the different SCO's.

The o-Chart

In this section the problem that we are 1nvolved-w1th is to
develop a set of decision rules for determining whether a group of
SCO's are in statistical control with respect to a measure of
variability of the random variables associated with the different
SCO's. One such measure of the variability is the standard
deviation, oij.

We shall once again formulate the hypothesis of control of the
standard deviations and the alternative hypothesis and then develop
the o-Chart to test these hypotheses.

First, let us make the assumption that the various X values

ijk
are normally distributed. This is perhaps a rather restrictive
assumption. However, theoretically we know nothing about the
frequency function of the standard deviation of samples from a
non-normal universe., Therefore, in order to develop the method-
ology we will assume normality and then later analyze the effects
of non-normality.

This hypothesis of control for variability is that the pop-
ulation standard deviations for the SCO's are equal. Thus,

oj1 = Ol = coe = O{m + Now suppose that these oij values come

from a universe of standard deviations whose average value is oj



|

26
and whose variance is o72= 62072, If a state of control exists
then 6 will be zero. If the process is not in control, then the
population standard deviations will be unequal and 8 will be greater
than zero. Once again the two hypotheses may be stated as:
Ho: 6 = 0;
8 >0.
As with the testing of the hypothesis for the mean values, we
know that it is ifmpossible to calculate a true population standard

deviation since this would indicate a deviation of all possible

xijk values about their mean. Therefore, we must once again rely
on sample estimates for our test.
Suppose that in addition to calculating sample averages,

iﬁj' we calculate sample standard deviations from the formula

n
I (Kygy - Xpy)?

°1j = | km] [5]

n
The frequency function of the distribution of variances,
aij, for samples of size n from a normal universe and its differential

is given by, momentarily dropping the 1ij subscript, (1)

(a-1)/2 -(nc?)/2 (n-3)/2
£(02)d(c?) = n e (62) 1 d(o?), [6]
26°2 r((n-1)/2)

where I'((n-1)/2) is the gamma or factorial function (see Appendix A,

p. 88). Now changing the variable to 043 in equation [6] gives
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(n-1)/2 -(no?)/20°2  n-3
f(a)do = n e (o) 20do
202 r'((n-1)/2)
(n-1)/2 -n02/20°2 n-2
- n e o do . [7]
(n-3)/2 (n-1) r((n-1)/2)
2 o’

The expected value of oij in an infinite number of samples of

size n can be evaluated by

E(o) = o f(o) do.

o
Substituting v = no?/20°2 , ¢ = JZo’zv/n , and 20do = 20°2/n dv
in the middle of expression [7] and in the integral, we obtain

-v

(n-2)/2 (n-1)/2
E(c) = (20'%) n e 20°2dv
n 20°2 r((n-1)/2)n
[o]

1/2 (n/2)~1 v
= 20‘) 1l v e dv
n r{(n-1)/2)
(o]
1/2

(20'2> I (n/2)

n r((n-1)/2)
2

£ . _TI(n/2) a” , or
n Ir((n-1)/2)

E(u13 ) . c2°ij .
where
c = [2 T'(n/2) . (8]
2 n  TI((n-1)/2)

In a similar manner it may be shown that E(c?) = ((n-1)/n)o-2 .

We may calculate 31 by averaging the various 044> thus
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m
- z °ij
o; = j=1 . [9]
m

Now since we have shown that E(E;j) = X° R
then by a similar argument E(Ei) - Czai .
As was stated pteﬁously, if a state of control exists, then
0201 - cz°1j » OX OF = 944 * Since the oij are sample rather than
population values there will again be some variation among them

that can be attributed to chance. A measure of this variation is

given by the standard deviation of the distribution of sample

standard deviationms, 9y » defined by
ij
Y 2
L (o054 - 04)
i
oy, =[1=1 13 : [10]
1] "

Thus, as in the case for testing mean values, we can test the
hypothesis of control of variability by setting limits of Ei z I(ooij
for a particular value of K and then observe whether computed
values of Uij fall within these limits. If a point falls outside
these limits we will assume that an assignable cause of variation
has occurred and this particular SCO must be investigated.

The probability of a point falling outside limits of
5; ¢ Ko“ij can be found by integrating [7] for these limits.
The evaluation of this integral is rather complicated, and depends
on the sample size n and the universe standard deviation,o{ .

Previous work (1, 2, 13) has shown that even for samples of n = 5

the form of the distribution of f(aij) roughly resembles the
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normal distribution. As n increases this resemblance becomes
greater. Therefore, although the probability of a sample oij
falling outside the control limits is not exactly the same as for a
sample iij' let us assume that these probabilities are roughly
equal. Thus, the same K factor can be used for determining the limits
for both charts.

We can now justify the establishment of the o-Chart. The
chart is established by drawing a center line at 51 and placing

control limits at 61 t KoU . Values of o4; are then plotted on

13 3
the chart for the m SCO's, and the hypothesis of control tested by
observing whether these plotted °1j fall within the limits. An

example of this chart is shown in Figure 8.

5 — — T T T T T T UCL=GyKo
(-]
:;7 JaN \ c =3
go / 4 \/ \ 1
0 N
1 ¥
= - — — — — — — — — LCL=g_ -Ko
< ' DR R B | 1 17793
© 1 2 3 4 5 ... m

SCO

FIGURE 8. CONTROL CHART FOR STANDARD DEVIATION
OF SCO'S,

Since °1j can never be negative (see equation [5]) the smallest
possible value for the lower control limit for the o-Chart is

zero. Therefore, if 515
lower limit will be set at zero.

- !ﬂuij yields a negative number the
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Estimation of o~

Although the methodology for the X-Chart was developed
before the o-Chart, in actual application of the control charts
the o-Chart should be established first., The reason for this is
that when the process variability is in statistical control the
process standard deviation, ¢°, may be estimated from the collected
data. If the variability of the process is not in approximate control
there is little basis for estimating ¢, and therefore little basis
for an X-Chart.

i

Therefore, if the SCO's are in control the universe standard

Recall from the previous section that E(Ei) - Cza‘ .

deviation for each level of input voltage may be estimated as
6; = {11]

where C2 is defined in equation [8].
Thus, gh estimate of the variability of the process may be
obtained by averaging the different Oi values for the five

levels of input voltage, and

h
I 04
6° = i=] . [12])
h
It should be noted that there are other methods available
for estimating 0“. For instance, an estimate of the standard

deviation for each level is given by
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m n - 2
r & - X,)
0y~ [f=1 k=g ¢ 1 : [13]
m

Once this estimate is obtained equation [12] could be applied
to give an estimate of o”.

The major advantages in the first method given over this

method are:

1. The estimate of ¢” by the first method is on the average
less than the corresponding estimate by the above method.
Therefore, criteria involving the use of the first method
will in the long run detect trouble more often than similar
criteria involving the second method (13).

2. The estimate of 0” by the first method involves the use of
the @, values which have already been calculated. The second
metho& requires considerable additional calculation.
Therefore, a savings in computational labor is brought
about by the first method.

A third method for estimating o° would be to calculate 01

from the formula

oii » [14]

[2(n-1) - 2nC§]

where oaij is defined by [10] and C2 is defined in [8], and
then apply [12] to give 8°. This method of calculating 6° can

be shown to be valid by computing

E(o2) = fazf(o)do,

o
vhere f {c)do is given in [7], and then computing

0,2 = [E(6?) - E(0)]%
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This method gives essentially the same result as does the first
method. However, once again a savings in computational labor
can be achieved by using the first method.

There are other methods of estimating o” from the data.
However, the methods presented here are considered to be the
most appropriate and therefore are the only ones nenﬁioned.
Consequently, we shall use the first method presented: i.e.,

the application of [11] and [12], to estimate o”.

Effects of Non-Normality

It was assumed for the development of the o-Chart that the
distribution of individual xijk values follows the normal distri-
bution. This assumption may not always be valid; therefore, we shall
discuss briefly some of the effects of a non-normal population.

The primary limitation caused by a non-normal population
is on the statement that the probability that a sample o1j
will fall outside the o-Chart limits is roughly the same as for
an i;j value falling outside the X-Chart limits. If the population
is not normal this statement is not necessarily true since
we know nothing about the frequency function of a sample standard
deviations from a non-normal universe.

Previous work with distributions of telemetry data have

indicated that although quite often these distributions are not

normal, they are usually unimodal® (7). The Camp-Meidel theorem

A unimodal distribution is one which is monotonically
decreasing on both sides of its one modal value, or value which
occurs the most frequently.
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states that if the distribution of the random variable X is unimodal,
the probability that X should deviate from its mean by more than
K times its standard deviation is equal to or less than 1/2.25K?
(4). It can be shown (13) that, although the distributions of aij
of samples of n are not known for other than the normal universe,
nevertheless the moments of the distributions of oij.ate known
in terms of the moments of the universe. Hence, we can always
establigh limits

Ui % KoUij
within which the observed standard deviation should fall more than
100(1 - 1/2.25K2) per cent of the total number of times a sample
of n is chosen, so long as the quality of product is controlled.

Now if K = 3, 100(1 - 1/2.25K2) = 95.1 per cent. This is compared

with a value of approximately 99 per cent if the normality assump-

tion holds. It is further believed that the main cause of non-normality

in telemetry data is peakedness rather than asymmetry. This would
possibly indicate that even a larger percentage of the sample
°1j values would fall within the limits than could be predicted by
the Camp-Meidel theorem. We shall therefore feel justified in
selecting the same K factor for both charts regardless of the form
of the distribution of individual values,

The limitation imposed by non-normality would become even
more evident in the discussion of the operating characteristic
function in CHAPTER IV. This function could not be evaluated with-

out the assumption of normality. Therefore, we will recognize
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the fact that the data may not be perfectly normally distributed,
but will make the assumption of normality realizing that perhaps
we have introduced some error into our analysis. It is believed that

this error will not seriously affect the methodology and thus may

be tolerated.

Summary of the Methodology

The control chart methodology presented in this chapter may
be summarized in the following step-by-step procedure:
1. Obtain means and standard deviations for samples of size n
for each of the j SCO's, and for each input level, from the formulas
n
Ix

X,, = kel 13k
y —
n

n

L (X,,, - X,,)2
o34 [ k= 13k 1]

n

> 2

z
- k:lxj.jk -
n

X .

2. Compute an average mean, average standard deviation, and

standard error of the mean for each level of input from the formulas
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m
6 = | (Xg4 - X,)2
‘iij =1 xij Xy

m-1

3. Determine the center line and control limits for the
o~Chart for each level of input. (The method for choosing the
proper K is given in CHAPTER V.)

CL =0
UCL = ai+xooij

ij
4, Plot the °ij values, If these values fall within the

LCL = oy - Kuo

limits, the package variability is in control. Any O34 that falls
outside the limits represents an SCO whose variability may not be

within proper specifications. These SCO's must then be examined.

If an assignable cause is found, the corresponding °ij must be

eliminated (and also the X

14 value) and the center line and control

limits recomputed.
5. Repeat step 4. until all 944 values are within the limits,
6. Determine the center line and control limits for the
X-Chart for each level of input. (The method for choosing the

proper K is given in CHAPTER V.)

7. Plot the'iij values, If these values fall within the control

limits, then the package is in control. Any'iij value that falls
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outside the limits calls for an examination of that particular SCO.
If an assignable cause of variation is found, the corresponding iﬁj
value must be eliminated and the center line and limits adjusted.

8. Repeat step 7. until all ’iij values are within the limits.
When this has been accomplished the telemetry package will be in
statistical control.

9. Estimate the standard deviation of the package, ¢°, as

h
I o

6" = ju] ’
h

vhere, 6; = oilcz'



CHAPTER 1V

THE DEVELOPMENT OF THE PROBABILITY

FUNCTIORS FOR THE TYPE 1 AND TYPE II ERRORS

In the first part of CHAPTER I1I, we stated in terms of a

mathematical model, that there are two possibilities for the

state of control of the telemetry process.

(a)

(b)

Process in Control

Here we assume that the distribution of the process (i.e.,
the distribution of individual items of product) is normal
with a fixed mean iz, and fixed standard deviation 0{,
both unknown.

Process out of Control

In this case we again assume that the distribution of

the process (at any particular time) is normal with fixed
but unknown standard deviation of, but now the process
mean is regarded as a chance quantity itself, having a

normal distribution with unknown mean Xi and standard

deviation 60 where 6 is a positive constant.

State (b) was later given in terms of the standard deviation as a

chance quantity having mean value o{ and standard deviation Bai.

37
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It was also shown that state (a) i8 a special case of state (b)
when 6 = 0. Both of these states are illustrated in Figure 9,
where several possibilities are shown corresponding to various
values of 6 (10,11).

Since either of these states may be present, we are con-
fronted with two types of errors, as was stated previously. First,
we may get out-of-control points on the chart when the process
is actually in control. The chance of this occurring is the
Type I error. On the other hand, we may get no out-of-control
points when the process level is actually shifting. The chance of
this happening is the Type II error.

In this chapter we will develop a probability function for
both charts that will enable us to study these errors for various
sample sizes, n, and for various control limit factors, K.

The probability function for the size of the Type II error,
B, is called the operating characteristic (0C) function and asso-
clated with this function is the OC curve. The OC curve for a
control chart used to study past output shows the probability of
all m sample points falling inside the control limits. For the
given set of sample data studied, this probability is expressed as
a function of the actual process characteristics. Therefore, this
curve gives a graphic picture of the ability of the control chart
to detect trouble.

Let us then first turn to the development of the operating

characteristic function for the X-Chart.
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Operating Characteristic Function for the X-Chart

The operating characteristic function for the X-Chart gives
the probability that, for a selected value of the limit constant
K, all of the m sample X values will fall within the control limits
as a function of a given value of the process mean. This value can
be represented by the process mean under control conditions plus
some quantity §, which indicates a shift in this mean. In
symbolic notation this probability function may be stated as
Bz (K)=P(X-K05 < il < X4Koz, ... , X-Koy < X < X4K0:|X)), [15]
vhere fg - X° + 8.
Thus we wish to evaluate [15] for various values of K, n, and 6.
First let us attempt to simplify [15]. By transposing the
X and dividing by 63 in each inequality we obtain
Bz(K)=P[-K < (il -%/6z <K, ..., K< X - ?oi < K|X;1.
The quantity Zj - (25 - §3IO; is distributed as a modified "t"
distribution known as the Hotelling T2 distribution (4). This
distribution is often rather difficult to work with in solving
theoretical problems. Therefore, we shall assume that Zj is
approximately distributed as a normal distribution with a mean of
zero and a variance of one (see Appendix A, p.87 ). We must realize
that some error is introduced by this assumption. However, the
error introduced due to the complexity of the solution of OC function
vhen the Hotelling T? distribution is used in thought to be more

than the error due to the normality assumption. Also, hypotheses
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testing when normality is assumed is more conservative than when a
"t" distribution is assumed. Thus, we wish to evaluate, for

z -~ N(0,1),
; ,1)

Bz(K) = P(-K < Z, <K, ... , K <Z < K[X3).

Let us now examine the solution of the probability of one of the
m inequalities for a given iz. This situation can be analyzed in

terms of the two curves shown in Figure 10.

Curve 1 —» € Curve 2

X - Ko X+ KO;

FIGURE 10. GRAPHIC REPRESENTATION OF_A SHIFT
IN THE PROCESS MEAN FROM X~ TO X;.

6
We wish to determine the shaded area for curve 2. That is, to
evaluate

P(-K < 2, < K|X))

3
we need to find the area under the normal curve with mean f;
(curve 2) between the -K and K limits that were placed on our
original curve (curve 1). This can be done by expressing the
-K and K limits in terms of their values on curve 2 and then

integrating the standardized normal equation (see Appendix A,

p87) between these new limits. As was stated previously, the
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Z equation for curve 1 is given by
2y = ®-D/0g .
The Z equation for curve 2 is given by
Zigy) = K- X+ 8)1/0; .
By taking the difference, 2(2) - Z(l), we can determine the
amount that the standardized Z value has shifted.
Shifted Z = X - (X +8) - X -X)
6z 05
- -6/0z .
We shall assume that any shift in the mean, §, can be
expressed as a parameter 6 multiplied by of . Therefore,
6 = 6og ,
and the shifted Z value becomes
Shifted Z = -6o3/0; .
Since we do not know what og is, it again must be estimated as
0z = ox /a/(@-1) . Hence,
s =00z , [17]
and Shifted Z = -80g/6z = -6 .

Since the Z value has shifted by an amount of -6, the -K
limit on curve 1 can be expressed as a point on curve 2 as
~K~-8, Likewise, the K limit will be, on curve 2, K-6.
Therefore,
K-8
- -22/2
P(-K < Z4 < leg) - 1//27 . e dz

~-K-8
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-~K-0 L]
-22/2 -z2/2
=1 - 1//2% e dz + e dz .
-8 K-8

Since we have assumed that the various X values are independent,
then necessarily their corresponding Z values are independent,

and equation [16] becomes (for a given value of §)

K-8 o« m
-22/2 -22/2
Bg(K) = |1 - 1//2% Llﬁ e dz + e dz . [18]
- K-0

This is due to the multiplication theorem of probability for
independent events ( see for instance 2, 4, 9).

Thus, for a given sample size n, 6 can be determined for a
selected value of § from equation [17] and then equation [18]
can be solved for various values of K.

The OC curve for the X-Chart can be plotted by marking the
horizontal axis with different values of 6 and the vertical axis
with B-(K) and then computing Bz(K) for the different §'s and
plotting the results.

We shall next consider the development of the operating charac-
teristic function for the o-Chart.

[

Operating Characteristic Function for the o-Chart

The operating function for the o-Chart gives the probability
that, for a selected K value, all of the m sample o's will fall

within the control limits as a function of a given value of the
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process standard deviation. This value of the process standard
deviation can be represented by the process standard deviation
under control conditions plus the quantity &, which now indicates

some shift in this standard deviation. Symbolically we have

B, (K) = P(c—Ko < o3 < o#Kog ,..., o-Ko; < o < o+Koslog), [19]
vhere og = 0" +45 .

If we divide both sides of each inequality by oé we obtain

B (K) = P 3'—‘Kn <9y < g +Ko_ ,..., 0 - Kog < Oy < o + Ko,
05 06 06 06 06 06

Now the quantity nozlog2 is known to be distributed as a chi
square (x2) distribution (4). Therefore,

Ujlﬂg - \’len

and equation [19] becomes (for a given value of §)
m

B,(K) = [ p ( LCLy/0§ <\/§57§ <ucL,/oi) 1 .
By squaring each side of the inequality and multiplying through by
n, we finally obtain

B,(K) = { P [ (LCLy/09)?%n < x? < (UCLy/o5)%n ] o [20)
This probability function can be solved for a selected value of K
and o5 by integrating the frequency function of the x? distribution
over the indicated limits. The frequency function of the x2
distribution is given by

v/2<1 -x2/2
£(x2) = (x?) e ,

v/2
2 r{v/2)

wvhere v is the number of degrees of freedom given by v = n-1,
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Thus,
u x 1w
2 v/2 -1 -x2/2
By (K) = 1 3 e dx 2 '
v/2
2 r(v/2)
x]
vhere -
- )2
xl (LCLO/OG) n , and
X = (UCLolos)2 n.
2 -x%/2
This integral can be evaluated by expanding e in a power
vi2 -1
series and then multiplying each term by (x2) and inte-

grating term by term (see Appendix A, p. 88 ). However, most
statistical textbooks contain tables of this integral and there-
fore, the OC function for the o-Chart can be evaluated by using
these tables.

The OC curve for the o-Chart can be plotted by marking the
horizontal axis with § and the vertical axis with Bo(K) and then
computing B8,(K) for the various § values and plotting the results.

The probability function for the size of the Type I error, a,
is relatively simpie. This function gives the probability that
sample points will fall outside the tK control chart limits when the

process is actually in control.

Probability Function for a for the X-Chart

The probability that sample means will fall outside the 2K

limits when the process mean is actually in control can be found by
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integrating the standardized normal equation over the area outside
these limits.

Thus,
-K ®

-22/2 -22/2
ag(K) = 1/vV2n e dz + e az |,

-0

or

-22/2
ag(K) = 2//2n e dz.
K

Probability Function for a for the o-Chart

The probability that sample standard deviations will fall out-
side of the *K limits when the process standard deviation is actually
in control can be found by integrating the frequency function for

o over the area outside these limits.

Thus,
-K ®
aa(K) = ff(o)do + jf(o)do .
— K

wvhere f(o)do is defined by equation {7].
Since the digtribution of ¢ is not necessarily symmetrical,

aU(K) cannot be further reduced.



CHAPTER V
THE DETERMINATION OF THE PROPER LIMIT CONSTANT

The determination of the proper limit constamt, K, requires an
economic evaluation of the risks involved in making an incorrect
decision: i.e., the alpha and beta risks. We must select a K which
will strike some economic balance between these risks. Therefore,
to enable us to select the optimum K, we need to formulate a cost
model which will represent the total cost attributed to these errors
and then choose the value of K which will yield the lowest possible
total cost.

The control chart cost model, using as a basis one telemetry
package, may be stated as

TC = cls + cza + can, (21]
vhere ¢ = unit cost of the B risk

unit cost of the a risk

0
8

¢ = unit cost of control chart sampling which is
3 directly dependent on the sample size, n.

Note that in this model the cost of control chart sampling, c3n,
will not be involved in the selection of the optimum K. However,
it will be necessary to consider this term when we later select the
best sample size, and thus this term is included in the cost model.

To determine the optimum K for the X-Chart the g and o in
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equation [21) will be Bz and az. It was stated in CHAPTER I that
we may use the same K factor for both the X- and o-Chart. Therefore,
we will base our decision on K for both charts by using B3 and oz in
equation [21] since these expressions are somevhat simpler than
are B, and a,.

To find the optimum K it will be necessary to differentiate
the total cost equation with te#pect to K, set this derivative equal
to zero, and solve for K. This value for K will result in the

ainimum total cost if the second derivative of {21], evaluated at

the optimum K, is positive. If the second derivative of [21] evaluated

at the optimum K is negative, we will have found a value for K
wvhich maximizes the total cost. This, of course, is not our
objective. |

Let us proceed to determine K. Taking the first derivative

of [21] with respect to K we obtain

dTC) _ cdB , cdu

dK dk = 24K
— ~K-9 - m
-z2/2 -22/2
Since Bz = |1 - 1//2v e az + e dz
— k-6

-22/2
and ag = 227 | e az| ,
u K

the partial derivatives df and da become
dK dK
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To evaluate these two derivatives we must use the method of differen-
tistion of integrals (see Appendix A, p. 90). Applying this method

wve obtain for da

= 2 F(=) d= -~ F(K) dK]

2% dK dK
L
-K2/2
- 2 0-e
72
-
-K2/2
= - 2 e °
2%
The evaluation of df is somevhat more complicated. We first
dK
obtain
K-6 m
-z2/2
d8_ = d |l1//2v e dz
dK dK
-K-9
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B K-8 (=1 K-0
-22/2 -22/2
= n e dz o d e dZ
/2 dk
-K-0 ] ~K-0
rx—e . 1
f -22/2 (-(x-e)zlz
I dk
K- _
~(-K-08)2/2
-e dg-x-og)
dk
K-6 1 =1
~22/2 -(K-8)2/2 -(-K-6)2/2
= e dZ . ( e +e
v
K-6
—
~22/2
In order to eliminate the integral sign let us expand e in a
pover series and integrate term by term.
K-6 K-0
-22/2
e dZ = (1-zz+ Z4 - 26 +) dz
2 4,21 8.3!
-K-8 K-
K-0
=2z2- 23 + 25 - 27 4+ ...
6 40 336
-~K-90

= | (x-8) - _(R-6)3 + (K-0)5 - (k-8 + :l
| 6 40 336

- | (-K-8) - (-K-8)3 + (-K-0)5 - (k-0)7 + ..] .
- 6 40 336
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Factoring (K-6) from the first series and (-K-6) from the second

yields
| &)
-22/2 . ]
f e az = (x-9) |1 - _(x-8)2 + _(R-0)* - (K -0)6 + ...
2.3 4.5.21 8.7.31
"’"‘0 T —
- -
-(k-8)| 1- (K-0)2+ (X-8)* - (K-0)5+ ...
2.3 4.5.21 8.7.3!

=(K~0) ; -nts gx—ezz“ - (-k~8) ; -n° g-x-e! 2n .
E—o 2901 (2n+1) n=0 28901 (2n+1)

if we remove L, 1/20 from each bracketed expression, the remaining

terms will define a function of e in series form. Thus,

k-0
-22/2 ~(K-0)2/2 o -(-K-0)2/2 =
e dz = | (K-8)e t 1729] - |(-K-8)e i/2n) .
n=0 n=0

-X-0

[ _J
The sum of the series [ 1/2" is 2; therefore,
=0

K-0

f -22/2 [ ~(K-0)2/2 -(-x-e)zlﬂ'
e dz = 2 | (K-0)e + (K48)e .

-K-90



[}“90)2/2 °(-KP9)zi§] 2¢c -K2/2
.le +e - 2 o .
;!'
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[(22]

Setting this equation equal to zero and taking loge of both sides to

further simplify the equation gives

-1
2me -(k-8)2/2 -(-k-0)2/2
log, 1 & log 4 | (K-0)e + (X+08)e

w

-(K-8)2/2 -(-K-8)2/2 2¢  -K2/2
. le +e --loge 2 e .

V2%
or
2mc -(K-8)2/2 -(-K-0)2/2
log, 1 & (---l)loge (K-0)e + (K+0)e +
:

-(k-0)2/2  -(-K-0)2/2 2, -K2/2
loge e +e -loge_n_ + log, ©

w

Collecting constant terms on the right hand side,

-(K-0)2/2 -(-k-08)2/2
(m=-1) loge (K-0)e + (K+0)e +

-(K-8)2/2 -(-K-8)2/2 -K2/2
log, | +e - log_ e

2::2 2-:l
= log, - leg
s ] e 75
-(k-8)2/2
Factoring e from each bracketed expression, we obtain
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[ -(x-0)2/2 ~4K8
(m-1) { log, |e + loge (K-8) + (K+0) e +
-(x-8)2/2 -4Ko0 -K2/2
log, |e +loge l+e -logee
2c2 Z-cx
= log - log .
i, e x
Simplifying this expression yields
-4K0
(1-m) (K-0)2 + (m~1) log, | (R-8) + (K+8) e
2
) -4Ko ) 2&:2 chl
- (K~8)¢ +1og, (1 + ¢ ) + K¢ = 1log - log
2 © 2 s o
or
-4K6
(1-m) (X-8)2 + (m~1) log, |(K-8) + (K+6) e
2
) R -4Ko ) 21:2 21«:1
-K<+2k0 + K- +1log, (L +e ) = 6 + log - log .
2 2 2 ¢ 2 ]
This finally reduces to
-4K6
(1-m) (X-6)2 + (m-1) log, [(K-0) + (K+6) e +
2
-4K0 ) Zc2 2-¢:1
KO +log (1 + e ) = 64 + log - log . (23]
2 e 2 - ',

This equation may be solved for K by the method of trial and error

for any selected values of cl, cz, and @,
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As stated previously, to prove that the K obtained by solving
[23] is the optimum K, i.e., the one which minimizes [21], we must
differentiate [22) with respect to K, substitute our optimum K

and obtain a positive result. Differentiating [22]) we obtain

) m=2
2mc -(K-08)2/2 -(-K-0)2/2
d2(1¢) = 1 J(m-1) |(K-0) e + (K+0)e
dK ryi '

-(K-6)2/2 -(Kk-0)#2 -(-K-8)2/2
. [(-8) e - (K-8)2e + Be +

-(-K-8)2/2
(K+0)2e

m-1
-(K-0)2/2 -(-x—a)zl-z‘_l [ -(K-8)2/2 -(-x-e)zlzl
.|e 4+ e + |(K-8)e 4+ (K+0)e

~-(K-8)2/2 -(-K-8)2/2 2Ke -K2/2
J(-K-0)e + (E+8)e + 2 ¢ .

In



CHAPTER VI

APPLICATION OF THE METHODOLOGY

The control chart methodology is now completely formulated;

therefore, we may apply the methodology to a telemetry package

experiment and hopefully obtain meaningful results.

Description of the Experimental Output

The experimental set-up was described in CHAPTER III and a
block diagram of the experiment given by Figure 5. There were
14 subcarrier oscillators available in the experimental telemetry
package. Two of these SCO's, channels 4 and 6, were purposely
maladjusted SCO's. Also two of the SCO's, channels 12 and 13,
vere purposely caused to have higher variability than the others
by injecting random noise into the system through these channels.
This condition would correspond to a package having two "noisy"
SCO's. These two types of malfunctioning components represent
the conditions for which the control charts have been designed
to detect, Therefore, if the methodology has been formulated
correctly, the four SCO's (channels 4, 6, 12, and 13) will be

judged out of control by the control charts. This will, of course,
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result in a decision to investigate these SCO's for assignable
causes of variability.

Printed values of means and standard deviations for the 14
SCO's at the 0% level of input for four different sample sizes
are given in Table 2, The selection of the optimum K factor will
be based on these values rather than on all five input levels.
It is believed that essentially the same decision as @ the proper
K would be reached regardless of the level of input voltage
chosen. Also, the optimum sample size, n, will be determined
from these values. Other sample sizes could have been chosen,
but the four sizes listed seem to represent the most ratiomal
choices and thus, for computational simplicity, one of these four
will be selected. After the choice of K and n is made the control
charts will be applied at each of the five levels of inmput.
. Table 1 contains values of ?; Oz o, and o5 for each of the

four sample sizes for the data given in Table 2,

TABLE 1

VALUES OF X, oy, 0, AND o, FOR 0% INPUT LEVEL
~ |

g [

B

o]l
Q
i

5 65.31 7.45 2.65 3.47

10 65.29 7.26 2.41 2.86

15 65.35 7.41 2.36 2.57

25 65.43 7.36 2.41 - 2.39
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Determination of Optimam K and n

Let us now consider the use of equation [23] in determining
the optimum K. We shall consider three possible values of §, the
shift in the universe mean. These values of 6 are 2, 5, and 10,
Once again, it should be noted that many other values might have
been chosen; however, these seem to represent values which we
are most interested in detecting. Also, let us assume the following
values for our cost parameters: ¢:1 = 10, c2 =1, ca- 0001. The
validity of this assumption cannot be readily assessed; however,
the researcher intuitively believes éhat these cost parameters
are fairly realistic in relation to each other. Using these
assumptions, the trial and error method of solving [23] yields the

optimum values of K listed in Table 3 as a function of n and 6.

TABLE 3

OPTIMUM VALUES OF K

5 10 15 25

2 |1.54 | 1.57 | 1.57 | 1.59

5 |1.61 |1.68 | 1.68 | 1.70

10 (2,09 }2.15 | 2.15 | 2.18

A sawple computation is given in Appendix A, pp.90,91 to illustrate

the method.
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Table 4 gives values of total cost, determined from equation

[21], for the assumed cost parameters.

TABLE 4

VALUES OF TOTAL COST (TC = CIB + cza + can)

—

n
5 10 15 25

2 | 1.4576 | 1.5074 | 1.5124 | 1.5224

5 | 0.8614 | 1.1070 | 1.1120 | 1.1220

10 | 0.5896 | 0.7586 | 0.7636 | 0.7736

It can be seen from Table 4 that the optimum sample size
(the value of n which results in the minimum total cost) is
n = 5 regardless of the size shift in the universe mean that we
wish to detect. Thus, Table 5 gives means and standard deviations
based on a sample size of n = 5 for the other four levels of
voltage input.

Before applying the control charts to the five levels of

input we must decide on the amount of shift in the mean we wish to

detect since different values of § constitute different values of K.

Let us assume that we are most concerned in detecting shifts of
size § = 5, Under this assumption, the optimum K given in Table 3

is K = 1,61.

Analysis by Control Charts

We first analyze the data given given in Table 2 for n = 5 for
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TABLE 5

MEANS AND STANDARD DEVIATIONS FOR 25Z, 50Z, 75Z, AND 1002 INPUT LEVELS

—— e ]

SCO Channel
2 3 4 5 6 7 8
252 | X 293.20 { 289.80 | 270.60 | 284.00 { 304,20 | 291.20 | 290.00
o 1.72 1,47 0.98 1.67 1.00 0.75 2.10
s0x | X 514.60 | 513.20 | 497.00 | 507.40 | 531.40 | 513.40 | 513.20
o 1,02 1.47 1.10 0.49 1.02 1.36 1.72
752 | X 737.80 | 736.60 | 726.00 | 732.00 | 759.60 | 736.00 | 736.80
c 1.17 1.02 1.09 0.63 0.49 0.63 1.17
1002 | X 957.36 | 960.88 | 953.60 | 962.28 | 988.20 | 960.00 | 960.60
o 0.79 1.34 0.80 2.42 0.98 0.63 0.80
TABLE 5--Continued
T: T SCO Channel
9 10 11 12 13 15 16
252 | X 289.00 | 289.40 |286.80 | 281.40 | 291.80 | 288.00 | 289.00
o 1.41 1.36 0.98 7.76 3.31 1.67 2,61
soz | X 512.00 | 512.60 }511.20 | 512,60 | 510,40 | 512.20 | 512,40
o 0.89 1.36 1.17 14.97 6.02 1.17 1.62
|
752 | X 736.20 | 736.80 |736.60 | 734.60 | 739.40 | 736.40 | 736.60 i
o 1.60 0.40 1.62 5.64 7.12 0.80 1.74 |
1002 | X 960,20 | 960.00 }960.40 | 963.00 [963.60 |961.00 {958.60
o 0.75 0.63 1.36 8.37 5.53 2.10 1.74
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variability by the use of the g-Chart. From Table 2, g = 2,65
and Oy = 3.47. Thus, with K= 1,61, our control limits and
center line become
UCL = ¢ + Ko
= 2,65 + (1.61)(3.47)
= 5.59

ICL = ¢ - Kaa
= 2,65 - (1.61)(3.47)
= 0 , since negative
CL = o = 2.65
The o-Chart is given in Figure 11, (a). SCO channels 12 and 13
are out of control. Therefore, these SCO's require investigation
and both their X and ¢ values are eliminated from the data. Re-
computing ¢ and o, we have
o = 1.39
o, = 0.37
Thus, our revised limits and center line become
UCL = 1.99
c, = 1.39
ICL = 0.79
We now observe from Figure 11, (b) that channel 16 is out of comntrol.
Once again, we eliminate the data for this channel and revise our
limits and center line.
o = 1.33

o, = 0.33
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UCL = 1.86
C, = 1.33
ILCL = 0.80
Plotting the remaining values of o in Figure 11, (c), we observe
that the only point falling outside of the limits is channel 11.
However, this point is only slightly below the lower limit and
thus the SCO's are now judged to be in control with respect to
variability at the O level., An estimate of ¢” for this level
is given by
6 = ?:'llc2
= (1.33)/(0.84)
= 1,58
Now we apply the X-Chart to the means listed in Table 2 for n = 5,
remembering that the data for channels 12, 13, and 16 have been

eliminated. Recomputing X and 6- we obtain

»

= 65.02
Thus our control limits become
UCL = X + Koi
= 65,02 + (1.61)(8.26)

= 78.32

LCL = X -~ KO;
= 65.02 - (1.61)(8.26)
= 78.32

c, = X = 65.02

W e
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Calibrated Units of o

(a)

(b)

(c)

6.00
5.00
4.00
3.00
2.00
1.00

2.25
2.00

1.75
1.50
1.25
1.00

2.25
2.00
1.75

1.50 |

1.25
1.00

b ——
[ N NN N I D S TN T S A N e |
2 3 45 6 7 8 9101112131516
SCO Channel

4 1 ¢ 1+ 1 1 & & | ¢

2 3 4 5 6 7 8 9101115 16
SCO Channel

2 3 4 5 6 7 8 9101115
SCO Channel

FIGURE 11. CONTROL CHARTS FOR o, 02 INPUT
Data from Table 1, n = 5,

(a) gives original chart.
(b) and (c) are revised charts.
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UCL = 5.59

CL = 2.65

ICL = 0

UCL = 1.99

CL = 1.39

LCL = 0.79

UCL = 1.86

CL =1.33

LCL = 0.80
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The X-Chart is plotted in Figure 12, (a) with revisions given in
Figure 12 (b), (c), and (d). The result of this analysis is an

investigation of channels 2, 4, 5, and 6. Our final values for

X and 6= are
1 x

X = 66,37
1
6= = 2,01
x
The control charts are applied to the data given in Table 5 in a
similar manner and are shown in Figures 13, 14, 15, 16, 17, 18, 19,
and 20. Values of &8 T :ii’ and o,—‘i as well as the SCO's requiring

investigation are given in Table 6.

TABLE 6

VALUES OF Oi, Xi, AND o- AND CHANNELS REQUIRING
i

INVESTIGATION FOR 5 INPUT LEVELS

oz SCO0's
i i Investigated

&

| Y
el
el
M

1 | 1.58 66.37 | 2.01 | 12, 13, 16, 2, 4, 5, 6

2 | 1.55 | 289.03 | 1.96 | 12, 13, 16, 8, 2, 4, 5, 6

3 1.43 512,20 4.88 12, 13, 4, 6

4 | 1.23 | 736.53 | 2.23 | 12, 13, 4, 5, 6

5 1.18 959.16 3.58 12, 13, 5, 6
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Calibrated Units of X

(a)

(b)

(c)

(d)

80
75

70
65

60
55
50

75

70
65
60

55

70

65

60

70

65

60

q;_._______._____——- UCcL
N /\M
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- “o—=0 L
SRR, — — — — —— — — — — T ],
[N N N NN I DN N DU R N |
2 3 4 5 6 7 8 91011 15
SCO Channel
e S U NP | 04 9
‘\\‘\\4/ 45‘\?" L
e — Y — —_—— —_—— — —— L
1 4 1 1 1 it 1 1
2 3 5 6 7 8 9101115
SCO Channel
- — —_— e —— e — — —— — LCL
L1 1 1 1 11 1 1
2 3 5 7 8 910 11 15
SCO Channel
:_?AH \/o CL
e . e . ——— —— —— — —— — ————— L,CL,
1 ]

SCO Channel

FIGURE 12, CONTROL CHARTS FOR i; 0Z INPUT.
Data from Table 1, n = 5,
(a) gives original chart. (b),
(c), and (d) are revised charts,

65
78,32

65.02

51.72

73.95
67.32

60,09

71.39

66,38

61.38

69.61

66,37

63.13



Calibrated Units of ¢

(a)

(b)

(c)

(d)

(e)

5.00
4,00
3.00
2,00

1,00

3.00
2.00

1.00

3.00
2,00

1,00

2,00
1,50

1,00
0.50

2,00
1,50
1.00
0.50

b e - e —— — — — — - —— UCL
L f\\h-°_dl u//P C
L
i o~ﬂm\\f/ﬁ~\°\\‘/,
' DT T N DN W W TN SO U N N B LCL
6 0 12 13 15 16
23456 78 Lnidntt -
NN A%
AN N Cy.
- WW
e e e e e e e e e e —= LCL
1 1 1 | 4.1 i L1 ] 1 |
2 3 4 5 6 7 8 910 11 13 15 16
SCO Channel
'_———-—————f-—b'(ﬂ,
AN .
- \ / w L
oo, e e T Y/ LCL
OV I N I U N W R AU A A |
2 3 4 5 6 7 8 91011 15 16
SCO Channel
= q\\\ P c.
i ‘\d/ Wm_q{ ‘ﬂ\\\//
1 1 . 1 4+ .1 1.1
2 3 4 5 o6 7 8 910 1l 15
SCO Channel
b o e e e . — — —— — — UCL
- \/H\/ .
e e e e B o e e —— . LCL

FIGURE 13,

| S S |
e / 910 11 15
SCO Channel

CONTROL CHARTS FOR g, 25% INPUT,

Data from Table 5. (a) gives
original chart, (b), (c), (d),
and (e) are revised charts,
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Calibrated Units of X

(a)

(b)

(c)

310

300

290

280

270

295

290

285

295

290

285
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L e — - A - — — - — UCL = 301.32
L ™ § Cp = 288,62
- —_— — — — — — — LCL = 275,92

1 1 1 1 i 1 1 1 1 1

2 3 & 5 6 7 9 10 11 15

SCO Channel

E N — — — — — — — — —  UCL = 292,10

/\\o——k Cp = 288.93

o

_——— —_— = - — — — LCL = 285,76

1 1 I} i

] 1
2 3 5 7 9 10 11 15
SCO Channel

-— — — — — — — — — — — UCL = 292,19
= /\ A, C, = 289,03

b — —— - - - — = — —— — — LCL = 285,87

1 1 1 1 1 1
3 7 9 10 11 15
SCO Channel

FIGURE 14, CONTROL CHARTS FOR.i; 25% INPUT.
Data from Table 5. (a) gives
original chart, (b) and (c) are
revised charts,



Calibrated Units of ¢
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8,00

6.00
(a)

4,00

2.00

4,00

3.00

2,00
(b)

1.00
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1,50
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LCL
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FIGURE 15,

11 1 1 1
2 3 4 5 6 7 8 91011 1516

SCO Channel

CONTROL CHARTS FOR o, 50% INPUT,
Data from Table 5, (a) gives
original chart, (b) and (c)

are revised charts.
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Calibrated Units of X

(a)

(b)

525

520

515

510

505

500

525

520

515

510

505

500

]T

i | 1 i 1

1 i L1 1
2 3 4 5 6 7 8 9 10 11 15 16
SCO Channel

1 1 1 L 1 L 1 | 1 1
2 3 5 7 8 9 10 11 15 16
SCO Channel

FIGURE 16, CONTROL CHARTS FOR i} 50% INPUT,
Data from Table 5, (a) gives
original chart. (b) 1is the
revised chart,
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UCL = 524,24

Cp = 512.55

LCL = 500.86

- —_ - - - — — — — — — UCL = 520,06

CL = 512,20

LCL = 504,34



Calibrated Units of o

(a)

(b)

6.00

5,00

4,00

3,00

2,00

1,00

2,00

1.50

1.00

0,50

70
- .
B o e et — - — 4 __ __ UCL = 4,91
P
u CL- 1.7'.‘

L1 1 1 LCL =0
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' T U TS DA S S N N N S
Z 3 &4 5 o /7 8 91011 15 16
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FIGURE 17, CONTROL CHARTS FOR o, 754 I~PUT.
Data from Table 5. (a) gives
original chart. (b) is the
revised chart.



Calibrated Units of X

(a)

(v)

(c)

(d)

750
745
740

735
730
725

745
740

735

730
725

740

735

730

740

735

730

o — e -~ - — UCL

o~ —0—0—°—0 ‘L

- - — - — — — L
1 1 1 4 J 1 &1 ]

PR |
2 3 4 5 6 7 8 9 10 11 15 16

SCO Channel
e . e s e e E—— — — — ——— UCL
L g—0—g—O—gp —O—yp CL
B _—— — ——— — —— e — LCL
1 1 1 1 1 1 1 1 1 i i
2 3 4 5 7 8 9 10 11 15 16
SCO Channel
e . - — — — —— e — o s e UCLL
‘L~\1\A O~ 00 —O—o
= CL
- —_— N — — - — — — — . LCL
1 1 1 1 1 1 1 1 1 1
2 3 5 7 8 9 10 11 15 16
SCO Channel
o — — —— ——— e— —— — e —— . UCL
=3
E — — — — —_- - - —_ — — L

i N T T | ' B N
3 7 8 9 10 11 15 16
SCO Channel
FIGURE 18, CONTROL CHARTS FOR i; 75Z INPUT,
Data from Table 5. (a) gives

original chart. (b), (c), and
(d) are revised charts.
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749,13

737.20

725,27

741,49

735.16

7:3.83

738,30

736,08

733.86

740,12

736.53

732,94



Calibrated Units of ¢

(a)

(b)

(c)

5.00

4,00
3.00

2,00
1,00

0.50

3.00

2,00

1.00

3,00

2,00

1,00
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UCL = 4,43

T, =z.19
[ S N U N N N B N N N B LCL = G
2 34 5 6 7 8 91011 12 13 15 16
SCO Channel
=
- — —_— — - — 5~ —/™ ™/ UCL = 2,10
r
A C, = 1,12
ALY i
:———————-———_—._ LCL = (.14
111
SCO Channel
— — — — — — — — — — —UCL = .17
ad €, = 0.99
LCL = 0
1 L L1 L1

1 1.1 1
T T s s

FIGURE 19, CONTROL CHARTS FOR o, 100% I.PUT.
Data from Table 5., (a) gives
oripinal chart, (b) and (c¢) are
revised charts,



Calibrated Units of X

(a)

(b)

980

975

970
965

960

955

950

945

965

960

955

950
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e — — —_— = = = — - —— UCL = 970,32

C, = 961.80

- — — — — — — — — — — LCL = 947.28

NN RO IR N N S |

N
[ =
=

0 6
° gcoschgnnei n Lol

E o - .- —_ - m — — - UCL = 564,92

i /\ P/\/\\F . - 95910

—_— e ——— o ——— —— == o —— — LCL = 953,40

| AN WO NS N TR M N
2 §’ 4 7 8 9 10 11 15 16
SCO Channel
FIGURE 20, CONTROL CHARTS FOR i, 100Z INPUT,
Data from Table 5, (a) gives

original chart, (b) is the
revised chart,
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The best estimates for the population standard deviation
at each voltage input level were given in Table 6. Therefore,
we may estimate the universe standard deviation for the telemetry
package as
5
6° = iil °1
5

= (1.58 +1.55 + ... +1.18)
5

= 1.39
Previous work has shown that a measure of telemetry system precision
(random error) is given by the standard deviation expressed as a
percentage of the range? of the process, o = 1006/R (5).
Thus, we may estimate the precision of the telemetry package that

we have analyzed as

= 1006°/R
o, 1 /R
vhere R = xnax - xmin -

a from Table 6,

Obtaining xiax and xmi
R = 959.16 - 66.37
= 892.79 .

Our estimate of the precision now becomes

o = 100(1.39)
P 892.79
= 0.162

7The range is merely the difference in the highest and lowest
values.
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Further work (6) has established that a measure of telemetry system
accuracy (systematic errors) is given by
- - a2
Ua 100 /(oﬁ ] )/ﬂl/k- H]

where oﬁ is a variance of the mean values about a theoretical

curve fitted to the data, or

h -
z (ii - Yi) 2
oﬁ = i=] .
h-r-1

In the equation {1 is the theoretical ordinate from the curve
which best fits the X; points and r is the degree of this curve.

A regression analysis was performed with the aid of the
University of Alabama Univac SS 80 computer and a linear equation
was found to provide the best fit to the data. The correlation
coefficient (degree of relationship) for the linear fit was 0.99799.
Using the theoretical ordinates obtained from the linear equation
the variance of the mean values about the curve was found to be

oﬁ = 1648.21 .

Thus our estimate of the accuracy of the telemetry package becomes

o = 100 /(1648.21 - (1.39) /(14)(5)
a 892.79

= 100 /1646.28/70
892,79

= 0,542 .
Expressed as 992 confidence limits the values of accuracy and
precision are
Average Precision = 0,48%

Average Accuracy = 1.62% .
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This may be interpreted as meaning that we would be approximately

992 certain that the precision of the telemetry package that we
have analyzed is no worse than 0.48Z and that the accuracy is no
worse than 1.62%.
We may now set standards for future control chart analysis
of telemetry systems (based on n =5, § = 5),
For the o-~Chart, at all 5 levels of input,
c, = CZO‘ = (0.84)(1.39) = 1.17

UCL = czo' +Kog = 1.17 + (1.61)(0.42) = 1

.85

ICL = czo‘ - Koy .= 1.17 - (1.61)(0.42) = 0.49

vhere, as implied in CHAPTER III, equation [14],

oy = _0° fzin-lz - 2nc2i

= 1,39 ﬁél.) - 2(5)(.84)2

= [(1.39)(0.95)] / 3.16
= 0.42 .
For the X-Chart, at each input level separately,

0Z Level: C; = X = 66.37

UCL = X +Kog = 66.37 + (1.61)(2.01) = 69.61

ICL = X - Kﬁxl = 66,37 - (1.61)(2.01) = 63.13

252 Level: C. = X = 289.03
UCL = X +Koy = 289.03 + (1.61)(1.96) =

289.03

]

>l
1
3
]

LCL (1.61)(1.96) =

50% Level: C, = X = 512.20

UCL = X + Kﬁi3 = 512,20 + (1.61)(4.88) =

]
=
'

7

LCL = 512,20 - (1.61)(4.88) =

292.19

285.87

520.06

504.34
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75% Level: C = i; = 736.53
UCL = i; + Koy = 736.53 + (1.61)(2.23) = 740.12
LCL = i; - Kox = 736.53 - (1.61)(2.23) = 732.94%
100Z Level: CL = X = 959.16
5
UcL = i; + Koy = 959.16 + (1.61)(3.58) = 964.92
ICL = i; -Kox = 959.16 - (1.61)(3.58) = 953.40

A final area of interest in applying the methodology will be to
give the OC curves for the control charts based on the standard values
that we have derived.

The OC function for the X-Chart based on standard values is the
same as that for past values except that the factor m in the
exponent ig eliminated since we are now interested in the proba-
bility of each new sample X value falling within the limits as they

are computed. The function can thus be stated as

~K-0 «
Bg(K) = 1- f £(z)dz +ff(l)dz .
- K-0

Applying this function to the OX level of input (n = 5, K = 1,61,
0z = 2,01), the OC curve given in Figure 21 may be derived for
various values of § (0 = §/0g).
The OC function for the o-Chart based on standard values may

be stated as

(icL/o ) *n

Bg(K) = f £(x?)dx?
(LCL/5[) %0

where °£ = 687+ 6.



1.0
0.9
0.8
0.7
0.6

0.5

M

0.4
0.3
0.2

0.1

78

FIGURE 21, OC CURVE FOR X-CHART BASED ON STANDARD VALUES, 0Z INPUT.

Thus, for 6" =

1.39, o = 0.42, UCL = 1.85, LCL = 0.49, the 0OC

curve given in Figure 22 may be derived for various values of §.
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0.4
0.3
0.2

0.1

FIGURE 22.

1 1 1 L

o 0.5 10 1.5 2.0 2.5 3.0 3.5 4.0

OC CURVE FOR o-CHART BASED ON STANDARD VALUES.



CHAPTER VII

CONCLUSION

Summary

This thesis has presented a methodology for determining
vhether a telemetry package is in a state of statistical control.
The development of the methodology h;s required research and
experimentation in the following areas:

1. The theoretical foundation for the establishment of
the X and o charts;

2. The investigation of the operating characteristics of
the X and o charts based on past data:

3. The determination of the proper control limit constant,
K, from an analysis of a control chart cost model;

4, The determination of the accuracy and precision of the
analyzed telemetry system,

This research and experimentation has resulted in the estab-
lishment of a control chart methodology for analyzing past telemetry
system performance and also the specification of control charts
for future analysis of telemetry systems. On the basis of the
control chart analysis, the accuracy and precision of telemetry
systems can be estimated.

The results obtained in CHAPTER VI for the particular telemetry

79
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Package that was analyzed are summarized for clarity as follows:

1.

3.

4.

Combined use of the X and o charts (considering all five
levels of input voltage) resulted in the investigation of
SCO channels 2, 4, 5, 6, 8, 12, 13, and 16. Of these
eight SCO's, only channels 4, 6, 12, and 13 were deliberately
caused to malfunction. The remaining channels were either
detected incorrectly (due to the alpha error) or were in
need of investigation due to assignable causes not
immediately known.
Estimates of the system accuracy and precision, expressed
as 992 confidence limits, Qere found to be

Average Precision = 0.,48%

Average Accuracy = 1,627 .
Standards for future control chart analysis were estab-
lished at all 5 levels of input. Selecting only the 0%

level of input as a basis the standards are

o-Chart: UCL = 1.85
¢, = 1.17
LCL = 0.49
X-Chart: UCL = 69.61
C,_ = 66.37
LCL = 63.13

The OC curves for both the X and o charts based on standard

values were given in Figures 21 and 22, The OC curves for
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both charts proved that for shifts of 5 or more in the

universe parameter (X” or 0”) the probability of not detect-
ing this shift, 8, is rather small. These curves and both
control charts were based on a K factor of 1.61 which was

discovered to be the optimum K.

Sources of Possible Error

Perhaps the most important assumption in the development of the
methodology is that the individual values of output are normally
distributed. This assumption has been made in other reports (5,6)
although the data was often found to be only moderately normal. The
more non-normal the telemetry data actually is, the more will be the
error in utilizing the control chart methodology, or for that matter,
any other type of parametric10 statistical test.

Another source of possible error is in the assumed values of
c, ¢, and c3. We have assumed that the cost of the beta error is
ten times as much as the cost of the alpha error, and the cost of the
alpha error is 1000 times as much as the cost of control chart sampling.
Since in the telemetry enviromment the cost of letting defective
components pass inspection is much greater than is the cost of
investigating satisfactory components, these cost estimates appear to
be roughly accurate in their relationship to each other. However,

if they are grossly inaccurate, the selection of K, the selection of

*“Non-parametric tests are not affected by the assumption of
normality. See, for example, (7).
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the optimum sample size n, and consequently the development of the
control chart limits must be made based on the new estimates. If
these old cost estimates are used (resulting in K = 1,61, n = 5,
etc.), and new estimates actually should be made, then some amount of
error will be entered into the analysis. Furthermore, we have
selected a shift of § = 5 as that which we wish to detect. If this
assumption is not valid, our analysis must be made based on some
other value of §, and thus a possible source of error might be eli-
minated.

A final error source is in the assumption that the K factor
selected for the X-Chart will be satisfactory for the o-Chart.
Shifts in X~ of § = 5 seem to be fairly realistic as a governing
factor for the det;rmination of K for the X-Chart. However, we may
wish to make our analysis more precise by basing the determination
of the control limits for the o-Chart on some other value of K,
or perhaps on a K determined for both X” and ¢° shifting simultan-
eously ( see p. 83). Therefore, the selection of one value of K
for both charts based on an analysis of the errors associated with

the X-Chart may have introduced some amount of error.

Recommendations for Future Research and Application

The researcher feels that the methodology presented in this
thesis could easily be used to form the basis for a complete tele-

metry package checkout procedure. Once the necessary experimental
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equipment was set up, the actual implementation of the methodology
would become a simple matter. The use of the SEL data reduction
equipment in the telemetry ground station further enhances the
possibility of this type of analysis. If the SEL equipment could
be programmed to give means and standard deviations for samples of
size n = 5, 10, 15, etc., these values could be plotted quickly on
control charts whose limits were already set and components which
were not in statistical control could be adjusted rapidly or could
be immediately replaced.

This thesis has also suggested a major area for future statis-
tical research. As was mentioned previously, it may be desirable to
base the determination of the optimum value of K on the assumption
that both X” and 0~ may shift simultaneously. This would require
the investigation of the OC function for the control charts when
both parameters are subject to simultaneous shifting. The development
of the OC function for this situation has been accomplished when the
charts are to be based on standard values for future production
(2, 4). However, as far as this researcher knows, no investigation
has been made of this function when the charts are based on past data.
The function would take the form of a surface and would seem to be
extremely complicated, yet this would no doubt be a major contribution
to the field of mathematical and applied statistics.

Another area for statistical research would be in a sensitivity
analysis of the control chart methodology to the assumption of normality.

A significant contribution could be made if a non-parametric method
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could be found for analyzing product variability based on distributions
vhose form is unknown.

A final possible area for research and application in the
telemetry environment is in the use of the control chart methodology
during an actual flight calibration period. As was suggested in
CHAPTER 1, the analysis by statistical methods of in-flight calibra-
tion data would be a considerable aid in determining whether the
telemetry package was performing satisfactorily in this phase. If
a particular SCO was found to be out of control, adjustments could
possibly be made for this malfunctioning component and rather than
completely losing the data from this particular channel, only a short

time period would be required for correcting the component.
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MISCELLANEOUS PROOFS, THEOREMS, AND

SAMPLE CALCULATIONS

Elementary theorems of expectation.

E(c) = C

E(cx) = cE(x)

E(x) = X

E(xty) = E(x) * E(y)
E(Zx) = ZE(x)

Ic = nc,

where c is a constant and x and y are variables.

f‘l’kg =
j‘ -1/2[(X - X)/oz)? _
2, Proof that 1 e dX = 00,9973
X-30'i

Let 2 = (X - X)/og , then dZ = dX/og and

¥+30g o 3
-1/2[( - X /og 12_ -22/2
1 e dX = 1//2x] e dz
— Ui ;!‘l
X-305 -3
3 3
-z2/2 -22/2
or, 1/2x] e dz = 2//2x dz.
-3 0

The value of this last integral multiplied by the factor 1//2w

may be found in most statistical textbooks, for instance (9), to be

87
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0.49865. Therefore, the value of the given integral is 2(0.49865)
= 0.9973.
~22/2
The function £(Z) = (1//2x)e is known as the standardized
normal equation and has a mean of 0 and a variance of 1.

3. Definition of the gamma function, TI([(n-1)/2] .

k v
By definition TI'(K) = V e dv .
0
k -v k-1 -v
Llet U= v , dv=e dv, dUi = kv dv, V = -e and
k -v I \I‘ k-1  -v
IK+1) = -ve - kv (-e dv)
0 0

= 0 -0 +KINK) ,
by the method of integration by parts.
Thus, 'K + 1) = Kr() (K>0).
When we have a positive integer m for the argument of the
function, repeated use of the above equation yields
T'(m) = (m-1)! rQ.
When m is not an integer, such as I'[(n-1)/2], we must use
logarithms and tables of factorials.
Thus, TI(5.7) = (4.7)(3.7)(2.7)(1.7)T(1.7), and then tables
are used for the last factor.
4, Developnent of method for evaluating

X

2 v/2 -1 -x?/2
B (K) = __ 1 f % e a? ,
v/2
2 T((v/2)

X
1
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where X1 = (LCL/oS)Zn, and
X = (UCL/o§)?n .
2
Let x2 = y to simplify the expression.
[ x X ]
2 v/2-1 y/2 1 w2 -1 -y/2
BO(K) - 1 y e dy - y e dy | .
v/2
2 r(v/2)
R 0 i
X X
1 w/2-1 /2 lyrs2-1
Z e dy = | (y ) 1'Z+L2"7_3+---+Z dy
2 4 12 2-n!
0 0
Hw/2-1 v2 v2 3v/2-3 av/2 - n
-f y -! '+’ "’Y +oo.+1______ d’
2 4 12 2.n!
0
X
w 1 ktl kv/2 - k
-1 f (-1)
k=1 2-ki
0
kv/2 - k+1
© k+l (X,) .
= I (-1) 2°k! [k(v/2 - 1) + 1)
k=1

A similar result is obtained for

X
2 w2 -1 -y/2
LI‘ A e dy

0
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Thus,
® k+1 k(v/2 = 1)+1 k(v/2 ~ 1)}
Bs(K) = 1 r (-1) jzz) - (X1)
v/2 k=1 [R(v/2 - 1) + 1] 2-KI

2 r(v/2)
5. Method of Differentiation of integrals (12, 14).
The fundamental theorem of integral calculus states that
whenever f(x) is a continuous function in the closed interval
(a, b) and F(x) is a function such that F°(x) = f(x), then

u
1

f f(k) dX = F(u ) - F(u)
1 0

u
0

for any two points uo and u1 in the interval. 1If uo and u
are differentiable function of another variable, y, so that

u = u , u = u
o o(y) . l(y),
the right hand member in the above integral is a functiom of
y and the chain rule of differentiation gives
dF(ul)/dy - F’(ul)(dul/dy) = f(ul)(dul/dy) .
Since a similar result holds for F(uo), differentiation of
The original integral yields
u
l(y)
d/da f £(x)dX = £(u ) (du /dy) - £(u )(du [dy) .
u
RS2
6. Sample calculations for finding optimum K from equation [23]

by trial and error.

Assume n = 5, m = 14, ¢, = 10, c, = 1, 85 = 7.45, @= 0.67.
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Try K = 1.50:
~4.02 -4.02
-13(0.83)2 + (13) log (0.83 + 2.17e ) +°0.50 + log,(1 + e )
2
= 0.25 + 1oge(2//§§) - 1oge(2301/7§) .
Solving the left hand side of the equation we obtain -4.,97.
Solving the right hand side we obtain -4.76. We shall try for
closer agreement.
Try K = 1,64:
-4.40 -4.40
-13(0.97)2 + (13)loge(0.97 + 2.31e ) +0.55 + loge(l + e )
2
= -4,76 .
Solving the left hand side we obtain -4.56 .
Try K = 1.61:
-10.32 -6.32
-13(0.94)2 + (13)1og_(0.94 + 2.28e ) +0.54 + log (1 +e )
2

= -4.76 .
Solving the left hand side we obtain -4.78 . We, therefore,
accept a value of K = 1.61.

Proof that value of K = 1,61 gives minimum cost by substitution
into second derivative equation [24].
Assume K = 1,61, 0 = 0,67, m = 14, c1 = 10, c2 = 1.
d2(TC)/dK2 defined by equation [24].
d2(TC)/dK? =

-(0.94)2/2 -(-2.28)2/2 12
111.55{ 13 [0.94e + 2.28e ]

-(0.94)2/2 -(0.94)2/2 -(-2.28)2/2
[-0.67e - 0.88e 4+ 0.67e
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-(-2.28)2/2 -(0.94)2/2 -(-2.28)2/2
+ (2.28) e ] [e + e ] +

-(0.94)2/2 -(-2.28)2/2 ,, -(0.94)2/2
[0.94e + 2.28e 177 - [-(0.94)e

-(-2.28)2/2 ~(0.94)2/2
+ 2.28e 1% +1.27e .

This reduces to:

12 13
d2(TC)/dK? = 111.55[13(0.798) (-0.498)(0.694)(0.798) (-0.520)]

+ 0.347 .
As can easily be seen, this results in a positive number, and

thus a minimum cost is obtained.
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GLOSSARY OF SYMBOLS

Probability of rejecting a true hypotheses
Probability of accepting a false hypothesis
Unit cost of the B8 error

Unit cost of the a error

Unit cost of control chart sampling which is directly dependent

on the sample size.

Constant defined by v2/n I'(n/2)
I'(n-1)/2

Gamma function

Control chart center line

Parameter reflecting amount of shift in some universe

parameter

Parameter reflecting amount of shift in some universe
parameter in terms of the standard deviation of the universe

parameter
Number of voltage input levels
Input level subscript (i =1, 2, ... , h)

Number of subcarrier oscillators

Subcarrier oscillator subscript ( j =1, 2, ... , m)

Number of individual values at any particular SCO and

input level

Individual value subscript ( k=1, 2, ... , n)

Control chart limit constant

Operating Characteristic

94



SCo

UCL

LCL

95
Subcarrier oscillator
Sample standard deviation
Universe standard deviation
Unbiased estimate of universe standard deviation
Unbiased estimate of standard deviation for each input level, i
Average standard deviation
Standard deviation of the distribution of standard deviations
Unbiased estimate of the standard deviation among the mean values
A population mean for each input level, 1
A universe mean
A sample mean
An average of the sample means
Individual value
Shifted universe mean defined by X2 = X" +6

(]

Shifted universe standard deviation defined by og =g+ §
Precision of the telemetry package
Accuracy of the telemetry package

Variance of the mean values about a theoretical curve fitted
to the data

Average range defined by i;ax - i;in
Degrees of freedom

Upper control chart limit

Lower control chart limit

Chi square

Standard normal deviate
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